#### LARC j-pole Construction Project

- Before I begin I would like to thank
  - Ren for pointers on centering stock in a lathe
  - Ernie for the dial indicator and caps
  - Rich for his support in tracking down vendors, the loan of tools, and encouragement
  - And many others for their suggestions

#### The Design

- Strictly the Arrow design as published
- No attempt to modify any of the dimensions
- A factory unit was available for comparison and used for thread length measurement

#### **Materials**

- Rod 3/8-aluminum rod, type 6061 aircraft grade
- Base plate construction grade aluminum angle
- SO239 stud
- Stainless nuts

#### **Material Costs**

- All over the place
  - Rod from over \$1.00 to \$0.35 per foot
  - Angle aluminum from \$3 to \$2 per foot
  - Stude from over \$6 to \$4 each
- It pays to shop around, and purchase in quantity.

### Rod Cut To Length Operation



## Rod Cut To Length Operation



#### All Twenty Sets Of Rods Cut



### **Rod Centering Operation**



#### **Shim Production Area**



## **Threading Operation**



#### **Twenty Antennas Cut And Threaded**



## **Marking Operation**



## **Drilling Operation**



## Tapping Jig (if you are Irish.:-))



## **Tapping Operation**



## All Tapped Out



#### All Machining Operations Complete



## Assembly



#### Hole Drilling Accuracy

| 1 million                |               |           |            | -           |               | 1                |         |          |
|--------------------------|---------------|-----------|------------|-------------|---------------|------------------|---------|----------|
|                          | •             | •         |            |             | a             | B                |         |          |
|                          | 10000         |           |            |             | )━━►          | $\Phi$           |         | ×Ψ       |
|                          | P.            |           |            | 4           | A             |                  |         |          |
|                          | -             | -)=       |            |             |               |                  |         | •        |
|                          |               |           |            |             |               | b                |         |          |
|                          |               |           |            |             | 1.10.1010.000 |                  |         |          |
|                          |               | 18        |            | a           | calculated    | center to center | ər      |          |
| Contract Service Service |               | 1000      |            | A           | measured      | snortest path    |         |          |
| Base plate me            | asured distan | ces       |            | D           | calculated    | center to cente  | er      |          |
|                          |               | -         | -          | D           | measured      | snonest pain     |         | -        |
| arge hole                | 0.5           | inches    |            |             |               |                  |         |          |
| threaded hole            | 0.33          | inches    | а          | b           | -             | v                |         |          |
| Nominal center           | to center ain | n a and b | 1.4375     | 4.5         |               |                  |         |          |
|                          |               |           |            |             |               |                  |         |          |
|                          |               |           |            |             |               |                  |         |          |
| D: N                     |               |           | Calculated | center to c | enter distai  | nces             |         |          |
| Pt. No.                  | A             | B         | a<br>4 202 | D           | D-a           |                  | a-aim   | b-aim    |
| 1                        | 0.948         | 4.057     | 1.363      | 4.472       | 3.109         |                  | -0.075  | -0.028   |
| 2                        | 0.979         | 4.100     | 1.394      | 4.515       | 3.121         | <u></u>          | -0.043  | 0.015    |
| 3                        | 1.953         | 4.099     | 1.300      | 4.514       | 3.140         |                  | -0.070  | 0.014    |
| 4                        | 1.019         | 4.129     | 1.434      | 4.544       | 3.110         | A                | -0.004  | 0.044    |
| c                        | 0.990         | 4.111     | 1.405      | 4.520       | 3.121         |                  | -0.033  | 0.026    |
| 7                        | 0.900         | 4.130     | 1.401      | 4.545       | 3 120         |                  | -0.037  | 0.045    |
| 8                        | 0.993         | 4.123     | 1 300      | 4.530       | 3 1/6         |                  | -0.030  | 0.030    |
| 9                        | 0.983         | 4.150     | 1 398      | 4.343       | 3 085         | -                | -0.039  | -0.043   |
| 10                       | 0.988         | 4 108     | 1 403      | 4.403       | 3 120         |                  | -0.035  | 0.023    |
| 11                       | 0.988         | 4 103     | 1 403      | 4.523       | 3 115         |                  | -0.035  | 0.018    |
| 12                       | 0.997         | 4 090     | 1 412      | 4 505       | 3 093         |                  | -0.026  | 0.005    |
| 13                       | 0.984         | 4 112     | 1 399      | 4 527       | 3 128         |                  | -0 039  | 0.027    |
| 14                       | 0.982         | 4.096     | 1 397      | 4.511       | 3.114         |                  | -0.041  | 0.011    |
| 15                       | 0.982         | 4,105     | 1.397      | 4 520       | 3 123         |                  | -0.041  | 0.020    |
| 16                       | 0.998         | 4,109     | 1.413      | 4,524       | 3,111         |                  | -0.025  | 0.024    |
| 17                       | 1.003         | 4.120     | 1.418      | 4.535       | 3.117         |                  | -0.020  | 0.035    |
| 18                       | 0.993         | 4.112     | 1.408      | 4.527       | 3.119         |                  | -0.030  | 0.027    |
| 19                       | 0.982         | 4.109     | 1.397      | 4.524       | 3.127         |                  | -0.041  | 0.024    |
| 20                       | 0.995         | 4.114     | 1.410      | 4.529       | 3.119         |                  | -0.027  | 0.029    |
| 21                       | 0.989         | 4.112     | 1.404      | 4.527       | 3.123         |                  | -0.034  | 0.027    |
| 22                       | 0.953         | 4.086     | 1.368      | 4.501       | 3.133         |                  | -0.070  | 0.001    |
|                          |               |           |            | -           |               |                  |         |          |
| average                  | 0.985         | 4.106     | 1.400      | 4.521       | 3.121         |                  | -0.038  | 0.021    |
| max                      | 1.019         | 4.130     | 1.434      | 4.545       | 3.146         |                  | -0.004  | 0.045    |
| min                      | 0.948         | 4.057     | 1.363      | 4.472       | 3.085         |                  | -0.075  | -0.028   |
| st dev                   | 0.01628168    | 0.018358  | 0.016282   | 0.018358    | 0.014879      | 0.               | .016282 | 0.018358 |

19

#### Hole Drilling Accuracy Summary

- Dimension (a) accuracy is about -1/16 of an inch from aim worse case
- On average about -1/32 of an inch from aim.
- Dimension (b) accuracy is about 1/32 inch worse case
- On average + 1/32 from aim



#### **Antenna Characterization**

- Data was collected for a random sample of fifteen of the twenty antennas.
- Each antenna was measured with an MFJ 269 Antenna Analyzer.
- Each antenna was measured at an elevation of 15 feet, using a section of RG8X of approximately 17 feet in length.
- Data for SWR, Impedance, and Reactance follows.

#### SWR vs Freq For 14 Antennas

|       |     |     |     |     |     |     |     |     |     |     |     |     |     |     | average | max | min | stdev |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|-------|
|       | 16  | 2   | 13  | 15  | 3   | 14  | 19  | 18  | 9   | 7   | 11  | 4   | 20  | 21  |         |     |     |       |
| 144.0 | 1.2 | 1.3 | 1.4 | 1.4 | 1.4 | 1.5 | 1.4 | 1.3 | 1.4 | 1.2 | 1.3 | 1.3 | 1.4 | 1.4 | 1.35    | 1.5 | 1.2 | 0.085 |
| 144.5 | 1.1 | 1.2 | 1.3 | 1.3 | 1.4 | 1.4 | 1.3 | 1.3 | 1.3 | 1.2 | 1.2 | 1.2 | 1.3 | 1.3 | 1.271   | 1.4 | 1.1 | 0.083 |
| 145.0 | 1.1 | 1.1 | 1.2 | 1.2 | 1.3 | 1.3 | 1.2 | 1.2 | 1.2 | 1.1 | 1.1 | 1.2 | 1.2 | 1.2 | 1.186   | 1.3 | 1.1 | 0.066 |
| 145.5 | 1.1 | 1.1 | 1.2 | 1.1 | 1.2 | 1.2 | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.129   | 1.2 | 1.1 | 0.047 |
| 146.0 | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.107   | 1.2 | 1.1 | 0.027 |
| 146.5 | 1.3 | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.2 | 1.2 | 1.2 | 1.1 | 1.1 | 1.143   | 1.3 | 1.1 | 0.065 |
| 147.0 | 1.4 | 1.3 | 1.1 | 1.2 | 1.2 | 1.1 | 1.2 | 1.2 | 1.2 | 1.3 | 1.2 | 1.3 | 1.2 | 1.2 | 1.221   | 1.4 | 1.1 | 0.08  |
| 147.5 | 1.5 | 1.4 | 1.2 | 1.3 | 1.3 | 1.2 | 1.2 | 1.3 | 1.3 | 1.4 | 1.3 | 1.4 | 1.3 | 1.3 | 1.314   | 1.5 | 1.2 | 0.086 |
| 148.0 | 1.6 | 1.5 | 1.3 | 1.4 | 1.3 | 1.3 | 1.3 | 1.4 | 1.4 | 1.5 | 1.4 | 1.5 | 1.4 | 1.4 | 1.407   | 1.6 | 1.3 | 0.092 |
| 430.0 | 2   | 1.9 | 2.1 | 2.2 | 2   | 2.1 | 2.1 | 2.1 | 1.9 | 1.7 | 1.9 | 2.2 | 2   | 2.2 | 2.029   | 2.2 | 1.7 | 0.144 |
| 435.0 | 1.4 | 1.4 | 1.4 | 1.5 | 1.4 | 1.5 | 1.5 | 1.5 | 1.4 | 1.3 | 1.4 | 1.6 | 1.4 | 1.6 | 1.45    | 1.6 | 1.3 | 0.085 |
| 440.0 | 1.7 | 1.6 | 1.6 | 1.7 | 1.6 | 1.7 | 1.7 | 1.8 | 1.5 | 1.4 | 1.6 | 1.7 | 1.6 | 1.8 | 1.643   | 1.8 | 1.4 | 0.109 |
| 445.0 | 1.5 | 1.4 | 1.6 | 1.6 | 1.5 | 1.6 | 1.5 | 1.6 | 1.4 | 1.4 | 1.3 | 1.6 | 1.4 | 1.6 | 1.5     | 1.6 | 1.3 | 0.104 |
| 450.0 | 1.9 | 2   | 1.9 | 1.8 | 1.8 | 1.8 | 1.7 | 1.7 | 2   | 2.2 | 1.8 | 1.7 | 2   | 1.7 | 1.857   | 2.2 | 1.7 | 0.15  |

#### **Graphical Presentation 2 Meters**



#### **Graphical Presentation 70 CM**



#### Impedance and Reactance

| Freq  | R   |     |     |     |     |     |     |     |     |     |     |     |     |     | -   | Average | Max   | Min      |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|-------|----------|
| 144.0 | 45  | 42  | 36  | 38  | 38  | 37  | 36  | 36  | 39  | 38  | 43  | 42  | 42  | 38  | 41  | 39.4    | 45.0  | 36.0     |
| 144.5 | 49  | 46  | 40  | 42  | 42  | 40  | 39  | 40  | 42  | 42  | 47  | 46  | 48  | 41  | 46  | 43.3    | 49.0  | 39.0     |
| 145.0 | 52  | 51  | 43  | 46  | 45  | 44  | 42  | 44  | 46  | 46  | 50  | 49  | 48  | 46  | 51  | 46.9    | 52.0  | 42.0     |
| 145.5 | 56  | 54  | 46  | 50  | 49  | 48  | 45  | 47  | 50  | 50  | 54  | 53  | 54  | 49  | 54  | 50.6    | 56.0  | 45.0     |
| 146.0 | 59  | 57  | 49  | 54  | 53  | 52  | 48  | 51  | 54  | 53  | 56  | 56  | 56  | 52  | 58  | 53.9    | 59.0  | 48.0     |
| 146.5 | 60  | 58  | 52  | 56  | 55  | 55  | 50  | 54  | 56  | 55  | 57  | 58  | 58  | 55  | 59  | 55.9    | 60.0  | 50.0     |
| 147.0 | 59  | 57  | 53  | 55  | 56  | 55  | 52  | 55  | 56  | 55  | 56  | 58  | 58  | 55  | 58  | 55.9    | 59.0  | 52.0     |
| 147.5 | 56  | 53  | 53  | 55  | 54  | 54  | 52  | 54  | 54  | 53  | 53  | 56  | 55  | 52  | 55  | 53.9    | 56.0  | 52.0     |
| 148.0 | 51  | 49  | 50  | 50  | 51  | 51  | 50  | 51  | 50  | 50  | 49  | 52  | 51  | 49  | 50  | 50.3    | 52.0  | 49.0     |
|       | Х   |     |     | -   |     | 2 2 |     |     |     |     |     |     |     |     |     |         |       | <u>.</u> |
| Freq  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |         |       |          |
| 144.0 | -10 | -11 | -11 | -11 | -11 | -11 | -12 | -11 | -10 | -11 | -10 | -10 | -11 | -10 | -12 | -10.8   | -10.0 | -12.0    |
| 144.5 | -8  | -9  | -10 | -11 | -11 | -11 | -12 | -11 | -10 | -10 | -8  | -9  | -9  | -11 | -11 | -10.1   | -8.0  | -12.0    |
| 145.0 | -6  | -7  | -9  | -9  | -9  | -10 | -11 | -10 | 8   | -9  | -6  | -7  | -8  | -10 | -9  | -7.5    | 8.0   | -11.0    |
| 145.5 | 2   | -4  | -8  | -7  | -7  | -9  | -11 | -8  | -6  | -7  | -4  | -4  | -5  | -7  | -6  | -6.1    | 2.0   | -11.0    |
| 146.0 | 5   | 5   | -5  | -5  | -5  | -6  | -8  | -6  | 3   | -4  | 5   | -2  | 4   | -3  | 6   | -1.1    | 6.0   | -8.0     |
| 146.5 | 10  | 10  | 4   | 6   | 5   | 5   | 5   | 5   | 5   | 5   | 9   | 5   | 6   | 3   | 10  | 6.2     | 10.0  | 3.0      |
| 147.0 | 15  | 15  | 6   | 10  | 10  | 9   | 9   | 8   | 10  | 10  | 14  | 10  | 11  | 9   | 15  | 10.7    | 15.0  | 6.0      |
| 147.5 | 20  | 19  | 11  | 15  | 14  | 13  | 10  | 12  | 15  | 15  | 18  | 15  | 17  | 14  | 20  | 15.2    | 20.0  | 10.0     |
| 148.0 | 24  | 22  | 15  | 17  | 18  | 16  | 13  | 15  | 18  | 18  | 21  | 20  | 22  | 17  | 23  | 18.6    | 24.0  | 13.0     |

#### Z For 2 Meters



#### **Reactance For Two Meters**



#### Sensitivity Study

 To assess the sensitivity of SWR to element length the following experiment was run. The short and long elements were adjusted all the way out and all the way in, as far as possible. All combinations of extremes were tested, and the results summarized.

#### Study- Tabular Form

|         | LLS      | LHsi     | HHsl     | HLsI |
|---------|----------|----------|----------|------|
| Freq    | SWR      | SWR      | SWR      | SWR  |
| 144.0   | 1.3      | 1.4      | 1.4      | 1.3  |
| 144.5   | 1.2      | 1.3      | 1.3      | 1.3  |
| 145.0   | 1.1      | 1.2      | 1.3      | 1.2  |
| 145.5   | 1.1      | 1.2      | 1.2      | 1.2  |
| 146.0   | 1.2      | 1.2      | 1.1      | 1.2  |
| 146.5   | 1.2      | 1.2      | 1.2      | 1.3  |
| 147.0   | 1.3      | 1.3      | 1.2      | 1.3  |
| 147.5   | 1.4      | 1.3      | 1.3      | 1.4  |
| 148.0   | 1.6      | 1.5      | 1.4      | 1.5  |
| average | 1.266667 | 1.288889 | 1.266667 | 1.3  |
| 430.0   | 2.6      | 2.5      | 1.6      | 2.1  |
| 435.0   | 1.9      | 1.9      | 1.4      | 1.4  |
| 440.0   | 2.3      | 2.3      | 1.4      | 1.4  |
| 445.0   | 2.3      | 2.4      | 1.7      | 1.7  |
| 450.0   | 1.5      | 1.7      | 2.1      | 2.3  |
| average | 2.12     | 2.16     | 1.64     | 1.78 |



#### High Low Study 2 Meters



#### High Low Study 70 CM



Dimension of the shortest element is most critical.

#### **Sensitivity Continued**

# So how much of a deviation from aim length makes a difference?

|       |      | experiment | tal    | short   | long  |         |
|-------|------|------------|--------|---------|-------|---------|
| short | long | short      | long   | 6.25    | 57.5  | nominal |
| high  | high | 6.4375     | 57.625 | 0.1875  | 0.125 |         |
| high  | low  | 6.4375     | 57.25  | 0.1875  | -0.25 |         |
| low   | high | 6.0625     | 57.625 | -0.1875 | 0.125 |         |
| low   | low  | 6.0625     | 57.25  | -0.1875 | -0.25 |         |

#### Conclusion

- SWR is relatively insensitve to rod length for 2-meters
- SWR is quite sensitive to rod length for 70-cm
  - Especially for the length of the shortest element
- Values will vary somewhat depending on the mounting conditions. YMMV

- For the Arrow Design j-pole project we have covered:
  - Design
  - Materials
  - Rod cutting
  - Rod threading
  - Base plate cutting
  - Base plate drilling
  - Base plate tapping
  - Assembly
  - Characterization

### **Thank You**

#### **Questions?**